文章编号: 0253-2239(2010)12-3649-06

LiNbO₃:Ni²⁺晶体的精细光谱和扬-特勒效应

焦 杨 殷春浩 白秋飞 梁 宁

(中国矿业大学理学院, 江苏 徐州 221008)

摘要应用晶体场理论和不可约张量算符方法构造了 3d⁸ 态离子在 C₃、对称晶场中包含自旋-轨道相互作用、自旋-自旋相互作用、自旋-轨道相互作用和其它轨道-其它轨道相互作用 4 种微观磁效应的 45 阶可完全对角化的能量哈 密顿矩阵。研究表明 LiNbO₃:Ni²⁺ 晶体中存在扬-特勒(Jahn-Teller)效应;自旋-轨道相互作用对晶体光谱和零场 分裂参量的贡献是最主要的,考虑其他 3 种微观磁效应后计算值更加接近实验值。 关键词 光谱学;LiNbO₃:Ni²⁺晶体;微观磁效应;零场分裂参量;光谱精细结构;扬-特勒效应 中图分类号 O734 **文献标识码** A **doi**: 10.3788/AOS20103012.3649

Spectral Fine Structure and Jahn-Teller Effect of LiNbO₃:Ni²⁺ Crystals

Jiao Yang Yin Chunhao Bai Qiufei Liang Ning

(College of Science, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China)

Abstract Applying crystal field theory and irreducible representation method, the completely diagonalized Hamiltonian matrices of $3d^8$ ion configurations in the trigonal symmetry sites have been established, which include four kinds of microscopic magnetic interactions: spin-orbit interaction, spin-spin interaction, spin-other-orbit interaction and orbit-orbit interaction. Based on the matries, spectral fine structure and zero-field splitting parameters of $LiNbO_3 : Ni^{2+}$ crystall are calculated. Jahn-Teller effect, and effects of four microscopic magnetic interactions on crystal spectral and zero-field splitting parameter are investigated. The results show that Jahn-Teller effect exists in this crystal and spin-orbit interaction makes uppermost contribution to energy level and zero-field splitting parameters while calculated values will be closer to the experimental values when the other three interactions are taken into account.

Key words spectroscopy; $LiNbO_3$: Ni^{2+} crystal; microscopic magnetic interactions; zero-field splitting parameters; spectral fine structure; Jahn-Teller effect

1 引 言

铌酸锂(LiNbO₃)是一种重要的多功能晶体材 料,具有优良的压电、电光和非线性光学等性能。掺 杂技术在提高 LiNbO₃ 晶体的光折变和全息存储性 能方面有广泛应用和广阔前景^[1]。掺杂离子大多选 用过渡金属离子,如 Fe,Cu,Mn,Ni,Ru 以及稀土离 子 Ce 等。由于掺杂离子与晶体中心离子在半径、 质量、电负性和电子云分布等方面存在着差异,掺入 到 LiNbO₃ 晶体后,使得晶体的局域结构发生改变, 从而影响晶体的光磁性质^[2]。掺杂离子的 LiNbO₃ 晶体光谱与其所处的晶体场环境密切相关,研究其 光谱能提供晶体材料的光学、磁学和微观结构等大 量信息。关于 LiNbO₃ 晶体光谱的理论分析的文 章,大多数只是基于自旋-轨道(SO)相互作用机理 讨论光谱的精细结构、电子顺磁共振参量等方面的 内容,并未讨论晶体中的扬-特勒(Jahn-Teller)效

基金项目:国家教育部留学回国人员实验室建设科研基金(2003.18)和中国矿业大学优秀创新团队基金(2004ZCX012) 资助课题。

作者简介: 焦 杨(1977—),女,博士研究生,讲师,主要从事光谱分析和电子核磁共振测试等方面的研究。

E-mail: jiaoyangcumt@126.com

导师简介:殷春浩(1959一),男,博士,教授,主要从事光谱分析和电磁测量等方面的研究。

收稿日期: 2010-03-07; 收到修改稿日期: 2010-07-09

应^[3~7]。然而晶体中心离子结构中的微观磁效应除 了自旋-轨道的磁相互作用外,还有自旋-自旋(SS) 相互作用、自旋-其它轨道(SOO)相互作用和以及轨 道-轨道(OO)相互作用等。随着实验设备和技术的 提高,获得光谱学数据越来越精确,有必要研究更多 的微观效应来完善光谱理论研究方法,从而使研究 更加深入,更加精细。

本文在考虑了 SO 相互作用基础上,进一步考 虑了前人忽略的 SS 相互作用、SOO 相互作用和 OO 相互作用,计算了 LiNbO3:Ni2+ 晶体的精细光 谱和零场分裂(ZFS)参量,得到的理论计算值和实 验值相符。物质中的扬-特勒效应是近年来研究者 新发现的一个前沿问题,它反映了电子自旋共振和 它所处的环境发生畸变的复杂过程的结果[8,9]。本 文利用立方场和三角对称晶场下光谱能级分裂图研 究了扬-特勒效应。研究表明 LiNbO3:Ni2+ 晶体光 谱中存在着扬-特勒效应,这是由立方对称晶场向三 角对称晶场畸变和 SO 联合作用所引起的,SS、SOO 和 OO 相互作用对扬-特勒效应没有影响。

2 理 论

LiNbO₃ 晶体由氧八面体以共面的形式堆积而 成,沿 C_3 轴相同间隔依次排列着-Li⁺-Nb⁵⁺-□-Li⁺-Nb⁵⁺-□-,□代表结构中的空位^[10]。掺杂 Ni²⁺ 后,Ni²⁺ 将取代 Li⁺ 或 Nb⁵⁺,处于三角畸变的氧八 面体晶场中, Ni^{2+} 的格位对称点群近似为 C_{3v} 对 称[11]。如图1所示。

图 1 LiNbO3 晶体的局域结构, M 为中心离子 Li⁺或 Nb⁵⁺

Fig. 1 Local structure of LiNbO₃ crystal. M represents the central ion Li⁺ or Nb⁵⁺

 Ni^{2+} 离子属于 3d⁸ 电子组态,处于 C_{3v} 对称的晶 场中。根据晶体场理论,3d⁸态离子的哈密顿量可 表示为[12]

$$H = H_{\rm E}(B,C) + H_{\rm CF}(B_{20}, B_{40}, B_{43}) +$$

30 卷

$$H_{\rm SO}(\xi) + H_{\rm Trees}(\alpha) + H_{\rm SS}(M_0, M_2) + \\H_{\rm SOO}(M_0, M_2) + H_{\rm OO}(M_0, M_2),$$
(1)

式中HE为静电库仑相互作用哈密顿量,HCE为周 围环境对离子产生的晶场势哈密顿量, H_{Trees}为 Trees 修正哈密顿量。H_{so}, H_{ss}, H_{soo}, H_{oo}分别为 为 SO 相互作用 SS 相互作用 SOO 相互作用和 OO 相互作用的哈密顿量。上述哈密顿量作用到中间场 基函数 $|l^{N}aSLJM_{I}\rangle$ 上可得相应哈密顿量矩阵元。 其中 $H_{\rm E}$, $H_{\rm CF}$, $H_{\rm SO}$, $H_{\rm Trees}$, $H_{\rm SS}$ 的矩阵元计算公式见 文献[13]。

 $H_{\rm soo}$ 的矩阵元表示为^[14] $\langle d^N v SLJM_I \mid H_{SOO} \mid d^N v' S'L'J'M'_I \rangle =$ $(-1)^{S+L'-J}W(SLS'L';J1) \times$ $\langle d^N \alpha SL \parallel T^{(11)} \parallel d^N \alpha' S'L' \rangle$,

(2)式中 $\langle d^{N} \alpha SL \parallel T^{(11)} \parallel d^{N} \alpha' S'L' \rangle$ 为约化矩阵元, $W(SLS'L';J1) = (-1)^{S+L+L'+S'} \begin{bmatrix} S & L \\ L' & S' \end{bmatrix}$ _____为 6*j* 符号。

$$H_{00}$$
的矩阵元表示为^[15]

$$\langle d^{N}vLSM_{L}M_{S} | H_{00} | d^{N}v'L'S'M'_{L}M'_{S} \rangle =$$

$$\{ aL(L+1) + \beta G(R_{5}) + N\delta \} \delta_{w'} \delta_{LL'} \delta_{SS'} \delta_{M_{S}M_{S}'} \delta_{M_{L}M_{L}'},$$
(3)

式中 $\alpha = -14 M_{\scriptscriptstyle 0} + 12 M_{\scriptscriptstyle 2}$, $\beta = -360 M_{\scriptscriptstyle 2}$, $\delta = 84 M_{\scriptscriptstyle 0} +$ $168M_2$, $G(R_5) = [v(12-v)/2 - 2S(S+1)]/6$, v为 高辈数,其数值如表 1^[16]所示。

表1 d⁸ 电子组态的高辈数

Table 1 Seniority numbers of d⁸ electron configuration

^{2S+1}L	³ F	3 P	1 S	$^{1}\mathrm{D}$	$^{1}\mathrm{G}$
υ	2	2	0	2	2

利 用 $\langle l^N \alpha SLJM_J | = \sum_{M_s M_J} C(SLM_sM_L, JM_J)$

 $|l^{N}\alpha SLM_{s}M_{l}\rangle$ 可将基函数 $|l^{N}\alpha SLM_{s}M_{l}\rangle$ 转化为 $|l^{N}_{\alpha}SLJM_{I}\rangle$,即得以 $|l^{N}_{\alpha}SLJM_{L}\rangle$ 为基函数的 H_{00} 相互作用矩阵元。其中 $C(SLM_{s}M_{L}, JM_{I})$ 为 Clebsch-Gordan 系数^[12]。

利用上述矩阵元计算公式可得到的 3d²/3d⁸ 态 离子在三角对称晶场中相应哈密顿量的全部矩阵 元,构造出一个可完全对角化的45阶微扰哈密顿矩 阵。根据群理论,该矩阵可约化为3个15阶矩阵。 在无外磁场的作用下,其中有两个矩阵的本征值是 完全简并的。对角化这三个能量矩阵,可获得 3d⁸ 态离子在三角对称晶场中的能量本征值,求出相应 的光谱精细结构的能级。

3 计算过程及讨论

3.1 LiNbO₃:Ni²⁺ 晶体的光谱精细结构和 ZFS 参量

上述构造的哈密顿矩阵为两个 Racah 参量 *B*, C和三个晶场参量 *B*₂₀, *B*₄₀, *B*₄₃ 以及 SO 相互作用参 量 ξ , Trees 修正参量 α 、磁作用参量 M_0 和 M_2 的这 9 个参量的函数。中心金属离子和配体之间采用最 近邻点电荷模型,则晶场参量 B_{20} , B_{40} , B_{43} 与晶体结 构 R_{10} , R_{20} , θ_{10} , θ_{20} 满足下列关系^[12]:

$$B_{20} = -\frac{3}{2}q_{e} \left[\left(\frac{1}{R_{10}} \right)^{3} (3\cos^{3}\theta_{10} - 1) + \left(\frac{1}{R_{20}} \right)^{3} (3\cos^{3}\theta_{20} - 1) \right] \langle r^{2} \rangle,$$

$$B_{40} = -\frac{3}{8}q_{e} \left[\left(\frac{1}{R_{10}} \right)^{5} (35\cos^{4}\theta_{10} - 30\cos^{2}\theta_{10} + 3) + \left(\frac{1}{R_{20}} \right)^{5} (35\cos^{4}\theta_{20} - 30\cos^{2}\theta_{20} + 3) \right] \langle r^{4} \rangle, \quad (4)$$

$$B_{43} = \frac{3}{4} \sqrt{35}q_{e} \left[\left(\frac{1}{R_{10}} \right)^{5} \sin^{3}\theta_{10} \cos\theta_{10} + \left(\frac{1}{R_{20}} \right)^{5} \sin^{3}\theta_{20} \cos\theta_{20} \right] \langle r^{4} \rangle,$$

式中 R, θ 为键长和键角, q_e 为有效电荷数。 $\langle r^2 \rangle$, $\langle r^4 \rangle$ 分别为 Ni²⁺的径向期待值。

在大量的拟合计算过程中,常采用赵敏光^[12,17] 的半自治场 d 轨道模型。当杂质离子掺入晶体后, 由于电子云的伸展,这些参量会缩小。按照平均共 价键理论,这种效应可用平均共价因子 N 描述,即

 $B = N^{4}B_{0}, \quad C = N^{4}C_{0}, \quad \alpha = N^{4}\alpha_{0},$ $\langle r^{2} \rangle = N^{2}\langle r^{2} \rangle_{0}, \quad \langle r^{4} \rangle = N^{2}\langle r^{4} \rangle_{0}.$ (5)

式中 B_0 , C_0 , α_0 , $\langle r^2 \rangle_0$, $\langle r^4 \rangle_0$ 分别为自由离子的 Racah 参量、Trees 修正参量和径向期待值, 其数值 如表 $2^{[12,18\sim19]}$ 所示。N 为平均共价因子, 需拟合。

表 2 自由离子态的 Ni²⁺参量值

Table 2 Parameters of Ni^{2+} in free-ion state									
Free	$B_{ m o}$ /	C_0 /	α_0 /	$\langle r^2 angle_0$	${\langle r^4\rangle_0}$	$M^{\scriptscriptstyle 0}_{\scriptscriptstyle 0}$ /	${ m M}_2^{_0}/$		
ion	-1	-1	1	$\langle \rangle$	(= 1	1		
1011	cm -	cm -	cm	(a. u.)	(a. u.)	cm -	cm -		

同样采用近似方法计算 M_0 和 M_2 : $M_0 = f^2 M_0^0$, $M_2 = f^2 M_2^0$, f 为轨道缩减因子。 M_0^0 , M_2^0 为自由离子 的磁作用参量^[15]。

再由 LiNbO₃ 晶体结构常量 $R_{10} = 0.1889$ nm, $R_{20} = 0.2112$ nm, $\theta_{10} = 62.8^{\circ}, \theta_{20} = 48.12^{\circ[20]}$,利用 (4)式得出晶场参量 B_{20}, B_{40}, B_{43} .可将 9 个参量缩 减为 4 个。通过光谱实验值拟合所需参数,经过大 量的 拟合计算,得出 $N = 0.901, f = 0.952, \xi =$ -583.5 cm⁻¹, $q_e = -1.52|e|$ 。将这些参量值代入 上述可完全对角化能量哈密顿矩阵中进行对角化计 算,可得 LiNbO₃:Ni²⁺晶体的光谱精细能级。自由 离子的基态项³F 在三角晶场和磁相互作用下分裂 得到轨道单态 $|A_1, 0\rangle$ 和轨道双态 $|E, \pm 1\rangle$,ZFS 参 量 $D = E(|E, \pm 1\rangle) - E(|A_1, 0\rangle)^{[21]}$,对应着光谱 精细结构中最低的两个能级之差,可由相应的能级 之差求得。计算结果和实验值如表 3 所示。

Table 3	Fine structures of	energy levels and	I ZFS parameters	of LiNbO ₃ · Ni ²⁺	crysta
---------	--------------------	-------------------	------------------	--	--------

Split ${}^{3}A_{2}(F) \rightarrow$	$\operatorname{Cal}^{a)}/\operatorname{cm}^{-1}$	$\mathrm{Cal}^{\mathrm{b}}/\mathrm{cm}^{-1}$	$\mathrm{Cal}^{\mathrm{c}}/\mathrm{cm}^{-1}$	$\operatorname{Cal}^{\mathrm{d}}/\operatorname{cm}^{-1}$	$\operatorname{Cal}^{\mathrm{e}}/\operatorname{cm}^{-1}$	$Observed^{[22,23]}/cm^{-1}$
$\mathrm{E}({}^{3}\mathrm{F} \not\downarrow {}^{3}\mathrm{A}_{2} \not\downarrow {}^{3}\mathrm{A})$	0	0	0	0	0	0
$\mathbf{A}({}^{\scriptscriptstyle 3}\mathbf{F} \blacklozenge {}^{\scriptscriptstyle 3}\mathbf{A}_2 \blacklozenge {}^{\scriptscriptstyle 3}\mathbf{A})$	4.6145	4.817	4.8997	4.5742	5.0613	5.06
$\mathrm{E}({}^{\scriptscriptstyle 3}\mathrm{F} \oint {}^{\scriptscriptstyle 3}\mathrm{T}_2 \oint {}^{\scriptscriptstyle 3}\mathrm{A})$	7230.2	7228.9	7225.8	7230.3	7224.5	
$\mathrm{A}({}^{\scriptscriptstyle 3}\mathrm{F} \not \mid {}^{\scriptscriptstyle 3}\mathrm{T}_2 \not \mid {}^{\scriptscriptstyle 3}\mathrm{A})$	7341.1	7342.2	7337.3	7340.5	7337.8	
$\mathrm{E}({}^{\scriptscriptstyle 3}\mathrm{F} \not {}^{\scriptscriptstyle 3}\mathrm{T}_2 \not {}^{\scriptscriptstyle 3}\mathrm{E})$	7459.1	7460.5	7457.4	7458.6	7458.2	
$\mathrm{E}({}^{\scriptscriptstyle 3}\mathrm{F} \not {}^{\scriptscriptstyle 3}\mathrm{T}_2 \not {}^{\scriptscriptstyle 3}\mathrm{E})$	7757.1	7756	7765.3	7757.8	7764.8	
A(${}^{3}F \downarrow {}^{3}T_{2} \downarrow {}^{3}E$)	7808.4	7807.1	7818.5	7809.2	7818	7810
A(${}^{3}F \downarrow {}^{3}T_{2} \downarrow {}^{3}E$)	7947.5	7951.2	7958.7	7946.9	7961.7	7970
$\mathbf{E}(^{1}\mathbf{D} \not\downarrow ^{1}\mathbf{E} \not\downarrow ^{1}\mathbf{E})$	11172	11172	11178	11178	11184	
$A({}^{3}F \not\downarrow {}^{3}T_{1} \not\downarrow {}^{3}E)$	11510	11508	11505	11515	11506	
$A({}^{3}F \not\downarrow {}^{3}T_{1} \not\downarrow {}^{3}E)$	11778	11781	11781	11783	11788	
$E({}^{3}F \oint {}^{3}T_{1} \oint {}^{3}A)$	12105	12106	12109	12110	12115	12120
$E({}^{3}F \not){}^{3}T_{1} \not){}^{3}E)$	12646	12646	12656	12652	12662	12990
$A({}^{3}F \not i {}^{3}T_{1} \not i {}^{3}A)$	13630	13630	13640	13637	13647	13770
$E({}^{3}F \downarrow {}^{3}T_{1} \downarrow {}^{3}E)$	13789	13789	13800	13796	13806	13773

3652		光	学 学	报		30 卷
						(续表 3)
$\mathbf{A}({}^{1}\mathbf{G} \blacklozenge {}^{1}\mathbf{A}_{1} \blacklozenge {}^{1}\mathbf{A})$	17772	17771	17777	17787	17792	
$\mathbf{A}(^{1}\mathbf{D} \not\models {}^{1}\mathbf{T}_{2} \not\models {}^{1}\mathbf{E})$	18527	18527	18532	18533	18538	
$\mathrm{E}(^{1}\mathrm{D} \not\downarrow ^{1}\mathrm{T}_{2} \not\downarrow ^{1}\mathrm{A})$	20271	20271	20272	20280	20281	19420
$\mathrm{E}({}^{3}\mathrm{P} \not\downarrow {}^{3}\mathrm{T}_{1} \not\downarrow {}^{3}\mathrm{E})$	20314	20317	20316	20349	20352	20450
$\mathrm{A}({}^{\scriptscriptstyle 3}\mathrm{P} \not \downarrow {}^{\scriptscriptstyle 3}\mathrm{T}_1 \not \downarrow {}^{\scriptscriptstyle 3}\mathrm{A})$	20539	20535	20541	20567	20565	20620
$\mathrm{E}({}^{3}\mathrm{P} \not\downarrow {}^{3}\mathrm{T}_{1} \not\downarrow {}^{3}\mathrm{E})$	21839	21840	21832	21874	21867	
$\mathrm{A}({}^{\scriptscriptstyle 3}\mathrm{P} \not \mid {}^{\scriptscriptstyle 3}\mathrm{T}_1 \not \mid {}^{\scriptscriptstyle 3}\mathrm{E})$	21989	21991	21988	22023	22026	
$\mathrm{E}({}^{\scriptscriptstyle 3}\mathrm{P} \not \downarrow {}^{\scriptscriptstyle 3}\mathrm{T}_1 \not \downarrow {}^{\scriptscriptstyle 3}\mathrm{A})$	22083	22090	22108	22120	22153	
$\mathrm{A}({}^{\scriptscriptstyle 3}\mathrm{P} \not \mid {}^{\scriptscriptstyle 3}\mathrm{T}_1 \not \mid {}^{\scriptscriptstyle 3}\mathrm{E})$	22170	22159	22200	22206	22225	22220
$\mathbf{A}({}^{1}\mathbf{G} \not \bullet {}^{1}\mathbf{T}_{1} \not \bullet {}^{1}\mathbf{A})$	23742	23742	23745	23742	23745	
$\mathbf{E}({}^{1}\mathbf{G} \not\downarrow {}^{1}\mathbf{E} \not\downarrow {}^{1}\mathbf{E})$	23745	23745	23748	23745	23748	23260
$E({}^{1}G \not\downarrow {}^{1}T_{1} \not\downarrow {}^{1}A)$	28919	28919	28923	28921	28925	
$\mathrm{E}({}^{1}\mathrm{G} \not \downarrow {}^{1}\mathrm{T}_{2} \not \downarrow {}^{1}\mathrm{E})$	29670	29670	29674	29669	29673	
$\mathbf{A}({}^{1}\mathbf{G} \not\models {}^{1}\mathbf{T}_{2} \not\models {}^{1}\mathbf{A})$	30021	30021	30025	30022	30026	
$\mathbf{A}(^{1}\mathbf{S} \bigstar^{1}\mathbf{A} \bigstar^{1}\mathbf{A})$	48191	48191	48195	48246	48249	
ZFS	-4.6145	-4.817	-4.8997	-4.5742	-5.0613	- 5.06

注:a)只考虑 SO 相互作用;b)考虑 SO+SS 相互作用;c)考虑 SO+SOO 相互作用;d)考虑 SO+OO 相互作用;e)考虑 SO+SS+SOO+OO 相互作用。

比较计算值 Cal^{a)} 和 Cal^{e)} 可见,4 种微观磁效应 中,SO相互作用对光谱的贡献大于90%,其他3种 磁效应对光谱贡献的总和不超过 10%。计算值 Cal^a) 接近于 Cal^e, 而考虑了其他三种磁效应后的计 算值 Cal^e) 更加接近实验值。对比计算值 Cal^a)、 Cal^b、Cal^c和 Cal^d可见,考虑了 SO 相互作用后再 分别考虑 SS 相互作用、SOO 相互作用以及 SOO 相 互作用,光谱都只产生平移。其中考虑到 SS 相互 作用后光谱发生的最大平移量为 11 cm⁻¹,平均平 移量为 1.50 cm⁻¹;考虑到 SOO 相互作用后光谱发 生的最大平移量为 30 cm⁻¹,平均平移量为 6.29 cm⁻¹,考虑到前人忽略的 OO 相互作用后光谱 发生的最大平移量为 55 cm⁻¹,平均平移量为 11.33 cm⁻¹。因此,这4种微观磁效应对光谱贡献 由大到小依次为,SO相互作用,OO相互作用,SOO 相互作用,SS相互作用。由表3亦可见,在 LiNbO₃:Ni²⁺晶体中,这4种微观磁效应对零场分 裂参量的贡献由大到小依次为 SO 相互作用, SOO 相互作用,SS相互作用,OO相互作用。

考虑了前人忽略的 SOO 相互作用、SS 相互作 用和 OO 相互作用后,使光谱值发生了微弱的平移, 而由光谱值计算得到的跃迁强度、顺磁磁化率等都 因光谱的平移而发生微弱变化,反映出微观效应对 晶体光磁性质的影响,其影响程度有待进一步研究。 3.2 LiNbO₃:Ni²⁺ 晶体的扬-特勒效应

令晶场参量 $B_{20} = 0, B_{40} = -14D_q, B_{43} = -\sqrt{10/7}B_{40},$ 可将 C_{3v} 对称下能量哈密顿矩阵退化

成 O_h 对称下能量哈密顿矩阵^[12],其中 D_q 为立方晶 场参量。将上述三角晶场参量 B_{20} 、 B_{40} 、 B_{43} 、SO 相 互作用参量 ε 、磁作用参量 M_0 和 M_2 的数值代入 C_{3v} 对称下能量哈密顿矩阵,将立方晶场参量 $D_q =$ $-792^{[22,23]}$ 代入 O_h 对称下能量哈密顿矩阵中可得 各能级的计算值,列于表 4。

其中 Oh :只有 Oh 晶场作用,无磁效应作用。 $C_{3v}^{(1)}$:只有 C_{3v} 晶场作用,无磁效应作用。 $O_{h}^{(2)}:O_{h}$ 晶 场加 SO 相互作用。 $C_{3v}^{(2)}: C_{3v}$ 晶场加 SO 相互作用。 *O*⁽³⁾_h:*O*_h 晶场加 SO, SS, SOO, OO 相互作用。*C*⁽³⁾_{3v}: C_{3v} 晶场加 SO, SS, SOO, OO 相互作用。对于自由 Ni²⁺离子,基态项为³F,不考虑磁效应时在 O_h 立方 对称晶场的作用下,³F 态分裂为³T₁₂,³T₂₂,³A₂₂ 三 个态,其中³A_{2g}是能量最低的基态。考虑到 SO 相 互作用后分裂成由 T_1, T_2, E 构成的 9 条能级, 再考 虑 SS、SOO 和 OO 相互作用后能级没有发生新的 分裂,只产生了平移。无磁效应时 Oh 对称下的三 条能级³T_{1g}, ³T_{2g}, ³A_{2g}在三角对称晶场(C_{3y} , D_{3} , D_{3d})作用下分裂为5条: $^{3}A_{2g} \rightarrow ^{3}A_{2}$, $^{3}T_{1g} \rightarrow$ ³A₂+³E, ³T_{2g}→³A₁+³E。在 SO 相互作用下,又进 一步分裂为 A_1, A_2, E 表示的 14条能级, 再加上 SS、SOO 和 OO 相互作用后能级也没有发生新的分 裂,只产生了平移。能级分裂如图2所示。 $LiNbO_3:Ni^{2+}$ 晶体的基态项³F 在 O_b 加 SO,SS, SOO,OO 相互作用下的能级为9条,经过三角畸变 后,分裂成在 Cav 加 SO,SS,SOO,OO 相互作用下的 14条能级,其中增加的能级是由简并能级 T₁分裂

成 A_2 与 E,T_2 分裂成 A_1 与E造成的,如图2所示。

表 4 Ni²⁺离子在立方对称晶场和三角对称晶场中的基态能级

Table 4 Ground-state energy levels of Ni²⁺ ion in cubic symmetrical and trigonally symmetrical crystal field

O _h symmetry				$C_{ m _{3v}}$ symmetry					
Term	$O_{ m h}^{(1)}/{ m cm}^{-1}$	$O_{ m h}^{(2)}/{ m cm}^{-1}$	$O_{ m h}^{(3)}/{ m cm}^{-1}$	Term	$C_{ m 3v}^{(1)}/{ m cm}^{-1}$	$C_{ m 3v}^{ m (2)}/{ m cm}^{-1}$	$C_{\rm 3v}^{(3)}/{ m cm}^{-1}$	Observed $/cm^{-1}$	
3 A	0	0	0 0	$^{3}\mathrm{A}_{2}$	0	0	0	0	
A_{2g}	0	0	0		0	4.6145	5.0613		
	7920	7612.3	7606.9	3 A	7497	7230.2	7224.5		
	7920	7800.1	7798.4	$^{\circ}A_{2}$	7497	7947.5	7961.7	7970	
3 T	7920	7800.1	7798.4		7552.3	7341.1	7337.8		
° 1 _{2g}	7920	8172.7	8181.4	³ E	7552.3	7459.1	7458.2		
	7920	8172.7	8181.4		7552.3	7757.1	7764.8		
	7920	8330.1	8344.1		7552.3	7808.4	7818	7810	
	12926	12260	12253		11922	11510	11506		
	12926	12732	12740	3 17	11922	11778	11788		
3 00	12926 12732 1274	12740	°E	11922	12105	12115	12120		
° I _{1g}	12926	13414	13433		11922	12646	12662	12990	
	12926	13414	13433	3 A	13352	11172	11184		
	12926	13823	13841	A_2	13352	13640	13647	13770	

图 2 Ni²⁺离子基态能级在立方对称和三角对称晶场中的分裂图

Fig. 2 Splitting diagram of ground-state energy levels of Ni²⁺ ion in cubic symmetry and trigonal symmetry crystal field

扬-特勒效应是指对于非线性分子,克拉默斯 (Kramers)简并的任何电子简并态,其结构是不稳 定的,必将产生电环境畸变,导致其简并态解除^[12]。 T_1,T_2 态是轨道和自旋简并态,由于晶体结构发生 了三角畸变,再加上 SO 相互作用导致了 T_1,T_2 的 简并得到解除而产生了分裂。 T_1,T_2 的分裂表明晶 体的局域结构发生了低对称畸变,这种畸变和 SO 相互作用导致了扬-特勒效应的存在。表 2 显示;立 方晶场不可能使 T₁,T₂ 发生能级分裂,单独的三角 晶场作用也不会产生这种分裂,只有在低于立方对 称的三角晶场与 SO 相互作用的共同作用下才能使 T₁,T₂ 发生分裂,二者缺一不可。由表 2 可见,考虑 了 SO 相互作用后,无论在立方晶场还是三角晶场 下,再考虑 SS 相互作用、OO 相互作用和 SOO 相互 作用都没有引起能级新的分裂,故而对扬-特勒效应 没有影响。 由于扬-特勒效应与晶体局域结构的低对称畸 变有关,研究光谱的分裂特别是 T₁,T₂ 的分裂(扬-特勒效应)可定性地判断晶体局域结构由高对称性 向低对称性的退化情况。

4 结 论

本文考虑了前人忽略的 SS 相互作用、SOO 相 互作用和 OO 相互作用,构造了 C₃、对称晶场中 3d²/3d⁸ 态离子的 45 阶可完全对角化的能量哈密 顿矩阵,计算了 LiNbO₃:Ni²⁺晶体的光谱精细结构 和零场分裂参量值,计算值与实验值相符合。SO 相互作用对光谱和零场分裂参量的贡献是最主要 的,但考虑了其他 3 种磁效应后的计算值更加接近 实验值。考虑了 SO 相互作用后再分别考虑 SS 相 互作用、OO 相互作用以及 SOO 相互作用,光谱没 有产生新的分裂,都只产生平移。LiNbO₃:Ni²⁺ 晶 体存在着扬-特勒效应,是由低于立方对称的三角晶 场与 SO 相互作用共同作用导致的。SS 相互作用、 OO 相互作用和 SOO 相互作用对扬-特勒效应没有 影响。

参考文献

- 1 Yang Xudong, Xu Xingguang, Shao Yaopeng et al.. Photovoltaic effect in doped photorefractive LiNbO₃ crystal[J]. Acta Optica Sinica, 2003, 23(4): 398~401
- 杨旭东,许心光,邵耀鹏等. 掺杂光折变 LiNbO3 晶体光伏效应 特性[J]. 光学学报,2003,23(4):398~401
- 2 Chai Zhifang, Liu Dean, Zhi Yanan et al. Photorefractive characteristics investigation in LiNbO₃ : Ru crystals [J]. Acta Optica Sinica, 2006, 26(8): 1246~1248
- 柴志方,刘德安,职亚楠等. LiNbO₃:Ru晶体的光折变特性研 究[J]. 光学学报,2006,26(8):1246~1248
- 3 Zhang Tingrong, Li Ling, Yu Wanlun. An investigation for the substitutional sites of Ni²⁺ in liNbO₃ : Ni²⁺ crystals [J]. J. Sichuan Normal University, 1997, **20**(4): 73~77 张廷蓉,李 玲,余万伦. LiNbO₃ : Ni²⁺ 晶体中 Ni²⁺ 离子的占 位研究[J]. 四川师范大学学报, 1997, **20**(4): 73~77
- 4 Xu Changtan, Zhou Zhiming. An investigation of the optical spectra and the ESR spectrum of Ni²⁺:LiNbO₃[J]. Spectroscopy and Spectral Analysis, 2001, **21**(3): 298~300 许长谭,周志明. Ni²⁺:LiNbO₃的光学吸收谱和 EPR 的研究 [J]. 光谱学与光谱分析, 2001, **21**(3): 298~300
- 5 Ruipeng Chai, Xiaoyu Kuang, Caixie Zhang et al.. Theoretical study of EPR spectra and local structure for (NiO₆)¹⁰⁻ cluster in LiNbO₃:Ni²⁺ and Al₂O³:Ni²⁺ systems[J]. Phys. Chem. Sol., 2008, **69**(7): 1848~1855
- 6 Zhang Hongmei, Ma Dongping, Liu De. Energy spectrum and g factor for LiNbO₃ : Ni²⁺ [J]. Acta. Physica. Sinica., 2002, 51(7): 1553~1557

张红梅,马东平,刘 德. LiNbO₃:Ni²⁺的常压能谱和 g 因子 [J]. 物理学报,2002,**51**(7):1553~1557

7 Ziyuan Yang, Czesław Rudowicz, Yauyuen Yeung. Microscopic spin-Hamiltonian parameters and crystal field energy levels for the low C₃ symmetry Ni²⁺ centre in LiNbO₃: Ni²⁺ crystals[J].

Physica B., 2004, 348(2): 151~159

- 8 Zhang Lei, Yin Chunhao, Huang Zhiming *et al.*. Energy level splitting of ground-states and Jahn-Teller effects in YAG: Cr³⁺ crystal[J]. *Acta Optica Sinica*, 2007, **27**(10): 1889~1895
 张 雷,殷春浩,黄志敏等. YAG: Cr³⁺ 晶体的基态能级分裂 及扬特勒效应[J]. 光学学报, 2007, **27**(10): 1889~1895
- 9 Yin Chunhao, Yang Liu, Zhang Lei *et al.*. Jahn-Teller effect of spectrum structure and g factor of electron paramagnetic resonance in ZnSiF₆6H₂O: Fe²⁺ [J]. Acta Optica Sinica, 2006, 26(6): 859~864
- 殷春浩,杨 柳,张 雷等. ZnSiF₆6H₂O:Fe²⁺晶体光谱结构 的杨特勒效应和电子顺磁共振g因子[J]. 光学学报,2006, **26**(6):859~864
- 10 Dongfeng Xue, Xiangke He. Dopant occupancy and structural stability of doped lithium niobate crystals[J]. Phys. Rev. B., 2006, 73(6): 1131~1136
- 11 T. H. Yeom, Y. M. Chang, S. H. Choh *et al.*. Experimental and theoretical investigation of Spin-Hamiltonian parameters for the low symmetry Fe³⁺ centre in LiNbO₃ [J]. *Phys. Status. Solid B.*, 1994, **185**(2): 417~424
- 12 Zhao Minguang. Crystal Field Theory[M]. Chengdu: Sichuan Education Publishing House, 1988, 139 ~ 161, 16, 229, 234~238, 168
 赵敏光. 晶体场理论[M]. 成都:四川教育出版社, 1988, 139~161, 16, 229, 234~238, 168
- 13 Yin ChunHao, Jiao Yang, Zhang Lei. Spectral hyper-fine structure and zero-field splitting parameters with Jahn-Teller effect of CsNiCl3 crystal [J]. Acta Physica Sinica, 2006, 55(11): 6047~6054
 股春浩,焦 杨,张 雷. CsNiCl3 晶体的光谱精细结构、零场分裂参量及 Jahn-Teller 效应[J]. 物理学报, 2006, 55(11): 6047~6054
- 14 Czesław Rudowicz, Ziyuan Yang, Yauyuen Yeung et al.. Crystal field and microscopic spin Hamiltonians approach including spinspin and spin-other-orbit interactions for d² and d⁸ ions at low symmetry C₃ symmetry sites: V³⁺ in Al₂O₃[J]. Phys. Chem. Solid., 2003, 64(7): 1419~1428
- 15 Hao Yue, Yang Ziyuan. Magnetic interactions and microscopic spin Hamiltonian approaches for 3d³ ions at trigonal symmetry sites[J]. J. Magn. Mag. Mater., 2006, 299(2): 445~457
- 16 C. W. Neilson, G. F. Koster. Spectroscopic coefficients for the pn, dn, fn configurations[M]. Cambridge, MIT Press, 1963: 6~10
- 17 Zhao Minguang, Du Maolu, Sen Guoyin. A μ-k-α correlation ligand-field model for the Ni²⁺-6X-cluster[J]. J. Phys. C (Solid State Physics), 1987, 20(33): 5557~5571
- 18 J. S. Griffith. Theory of Transition Metal Ions[M]. Shanghai: Shanghai Science and Technology Publishers, 1965, 554~655
 J. S. 格里菲斯. 过渡金属离子理论[M]. 上海:上海科学技术 出版社, 1965, 554~655
- 19 R. E. Waston, Blume M. Spin-spin interaction in paramagnetic ions[J]. Phys. Rev., 1965, 139(8): 1209~1210
- 20 S. C. Abrahams, J. M. Reddy, J. L. Bernstein. Ferroelectric lithium niobate. 3. Single crystal X-ray diffraction study at 24 °C [J]. Phys. Chem. Solid, 1966, 27(7): 997~1006
- 21 Yang Z. Y. Microscopic origins of the spin-Hamiltonian parameters for 3d² state ions in a crystal [J]. Acta Physica Sinica, 2004, 53(6): 1981~1988
 杨子元. 晶体材料中 3d² 态离子自旋哈密顿参量的微观起源[J]. 物理学报, 2004, 53(6): 1981~1988
- 22 L. Arizmendi, J. M. Cabrera, F. Agullo-Lopez. X-ray induced luminescence of LiNbO₃[J]. *Ferroelectrics*, 1980, 26(6): 823~825
- 23 A. K. Petrosyan, A. A. Mirzakhanyan, Zero-field splitting and g-Values of d⁸ ions in a trigonal crystal field[J]. *Phys. Status Solid*, 1986, 133(2): 315~322